Persistence in nonequilibrium surface growth.

نویسندگان

  • M Constantin
  • C Dasgupta
  • P Punyindu Chatraphorn
  • Satya N Majumdar
  • S Das Sarma
چکیده

Persistence probabilities of the interface height in ( 1+1 ) - and ( 2+1 ) -dimensional atomistic, solid-on-solid, stochastic models of surface growth are studied using kinetic Monte Carlo simulations, with emphasis on models that belong to the molecular beam epitaxy (MBE) universality class. Both the initial transient and the long-time steady-state regimes are investigated. We show that for growth models in the MBE universality class, the nonlinearity of the underlying dynamical equation is clearly reflected in the difference between the measured values of the positive and negative persistence exponents in both transient and steady-state regimes. For the MBE universality class, the positive and negative persistence exponents in the steady-state are found to be theta(S)(+) =0.66+/-0.02 and theta(S)(-) =0.78+/-0.02, respectively, in ( 1+1 ) dimensions, and theta(S)(+) =0.76+/-0.02 and theta(S)(-) =0.85+/-0.02, respectively, in ( 2+1 ) dimensions. The noise reduction technique is applied on some of the ( 1+1 ) -dimensional models in order to obtain accurate values of the persistence exponents. We show analytically that a relation between the steady-state persistence exponent and the dynamic growth exponent, found earlier to be valid for linear models, should be satisfied by the smaller of the two steady-state persistence exponents in the nonlinear models. Our numerical results for the persistence exponents are consistent with this prediction. We also find that the steady-state persistence exponents can be obtained from simulations over times that are much shorter than that required for the interface to reach the steady state. The dependence of the persistence probability on the system size and the sampling time is shown to be described by a simple scaling form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Study of KPZ Equation Based on Changing its Parameters

In this article we investigate the behaviour of the scaling exponentsof KPZ equation through changing three parameters of the equation. Inother words we would like to know how the growth exponent β and theroughness exponent α will change if the surface tension ν , the averagevelocity λ and the noise strength γchange. Using the discrete form of theequation , first we come to the results α = 0.5 ...

متن کامل

The nonequilibrium glassy dynamics of self-propelled particles.

We study the glassy dynamics taking place in dense assemblies of athermal active particles that are driven solely by a nonequilibrium self-propulsion mechanism. Active forces are modeled as an Ornstein-Uhlenbeck stochastic process, characterized by a persistence time and an effective temperature, and particles interact via a Lennard-Jones potential that yields well-studied glassy behavior in th...

متن کامل

Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes

Three models of surface growth processes in nonequilibrium steady state (NESS): Edwards–Wilkinson Model, Mullins–Herring Model and Kardar–Parisi–Zhang Model, are presented. Power laws, universality of non-equilibrium distributions, and scaling functions are discussed in details together with some experiment results.

متن کامل

Layer-by-layer epitaxy in limited mobility nonequilibrium models of surface growth.

We study, using noise-reduction techniques, layer-by-layer epitaxial growth in limited mobility solid-on-solid nonequilibrium surface growth models, which have been introduced in the context of kinetic surface roughening in ideal molecular beam epitaxy. Multiple hit noise reduction and long surface diffusion length lead to qualitatively similar layer-by-layer epitaxy in (1+1)- and (2+1)-dimensi...

متن کامل

Pattern Formation and Dynamics in Nonequilibrium Systems

A catalogue record for this publication is available from the British Library ISBN 978-0-521-77050-7 hardback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 69 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2004